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Some calculations of gravity wave resistance 
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By R. F. MAcKINNON, R. MULLEY 
A N D  F. W. G. WARREN 
Imperial College, London, S.W. 7 

(Received 4 June 1968) 

A disk moves edgewise in a vertical plane with a sufficiently small constant 
velocity in a uniformly stratified inviscid fluid under gravity. The resultant 
hydrodynamic thrust on the disk is estimated. Configurations of some associated 
phase surfaces are shown. A transient Green’s function is presented for the case 
when the Boussinesq approximation is not made, and also for an analogous case 
of inertial waves in a rotating fluid. 

1. Introduction 
A thin body (disk), symmetric with respect to the vertical y, z plane, moves 

within a stratified fluid on a steady path a t  an angle of inclination e,, to the 
vertical. The density of the fluid decreases exponentially upwards, and so in the 
presence of a gravity field wave motions of the fluid are excited. The results pre- 
sented here represent a generalization of some earlier work by one of us (Warren 
1960), for the case of strictly vertical motion. The theory is a particular case of 
the general treatment given by Lighthill (e.g. 1967). 

For low speeds the results are relevant to meteorological problems, for example 
(see Richards 1962). The linearized equation which governs the modified pressure 
perturbation, p ,  for a dry inviscid ideal isothermal atmosphere is 

[a2/at2{V2-y2g2/4C4-C--2a2/at2}+ (y-  1) (g2/c2) {P/a9+a2/ay2}]p = 0. (1.1) 

This equation is readily deduced from the results of Eckart (1960, chapter 4). 
The z axis is positive upwards. The modified pressure perturbation is related to 
the true pressure perturbation p1 through the equation p = (pl /p)  exp (yqz/Zc2), 
where c is the velocity of sound andp is a standard density. y is the ratio of specific 
heats of the gas. For axes (z,y,z) which move with the body, that is, with a 
velocity U = (0, V ,  W ) ,  a/at is replaced by a/at - U . V, which for steady motion 
reduces to - U .  V. Then if IUl < c the resulting equation of steady motion is 
approximately 

[(U . V)2 {V2 - p2/41 + N2{a2/aX2 + a2/ay2}] p = 0, (1.2) 

where p = yg/c2 and N = (y-  l ) tg/c  is the VaisalGBrunt frequency. Relative 
t o  axes fixed in the disk, the equation of its hull is 

x = * 4, (1.3) 
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where 2a is the maximum thickness of a disk whose length and breadth are A 
and B respectively. Then a < A ,  a < B and a small thickness parameter a is 
defined by a = 2a/A. For sufficiently small a, linearization is valid and the 
boundary condition at  the hull, which is a free slip condition, is approximately 

aP/axlz=*o = +aexp(-P@) (U.V)'E(y,z). (1.4) 

The case for which AP < 1 (ygA/c2 < 1) and qA/IUcl = 0 ( 1 )  is considered. 
That is, the stratification density gradient is small and the gravitational field 
is strong, and the Boussinesq approximation is made. Further remarks on this 
approximation will be made in 0 4. The problem is then to search for a solution 
of the equation 

[where N = N d ,  (d  = unit vector upwards)], subject to 

[(U.V)2V2+(N~V)2]p = 0, (1.5) 

ap/axlz=*o = +U(U.V)2&. (1.6) 

As is well known, this system does not possess a unique solution, since certain 
wave systems may be superimposed arbitrarily without destroying the validity 
of (1.5) or (1.6): the boundary condition at infinite distance is not well defined. 
To overcome this difficulty, Lighthill's (1967) method may be used, or, equi- 
valently, the limit of the initial value problem may be taken. Thus equation 
(1.5) is replaced by 

Equations (1.6) and (1.7) are also appropriate for the case of an incompressible 
stratified fluid, where the density p(z) decreases exponentially upwards; that is, 
p(z) = pexp ( -Pz ) ,  and the Boussinesq approximation (equivalent to the limiting 
process P .+ 0, q -+ co, with Pg = N 2  = constant) is again made. 

[(a/'at - U. V)' V2 + (N x V)']p = 0. (1.7) 

2. The hydrodynamic forces on the disk 
The boundary condition at  large distances for the initial value problem is 

lim p ( r , t )  = lim IVp(r,t)l = 0 
bI-- lrl-+m 

for all finite t. Introduce the Fourier transforms 

and 

where K = ( ~ , l , m )  and K = I K I ,  i2 = K / K .  

Then equation (1.7) becomes 

[ ( a / a t - i U . ~ ) ' ~ ~ +  (N X K)2]p(K, t )  = %(U. IC)~{(U.K)' -N'}[(Z, m), (2.2) 

when the boundary conditions (1.6) and (2.1) are taken into account. The motion 
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may be supposed initiated at a time t = 0 when bothp(tc, 0) and@(& O ) / a t  vanish. 
(This supposition is discussed further in 5 4.) Then 

p ( ~ , t )  = ~~(U.K)~(N~-(U.K)~)~(Z,~).P(K,~)/K~~~~~, (2.3) 

where c1,2 = c1 ,2(K)  = U . K +  INXkI (2.4) 
P(K, t )  = 1 + (c2 eiuit - el eiuat)/(el - e2). (2.5) and 

Let y‘, z’ be co-ordinates in the y, z plane fixed in the disk and respectively 
parallel and normal to its direction of motion (figure 1). Let D(t) ,  L(t) be the 

FIGURE 1. Co-ordinate axes and reference angles. 

forces conjugate to the y’ and z’ directions respectively. In  these co-ordinates the 
equation of the hull is x = &,(y‘, 2‘) and SO approximately 

(D, L)  = 2asm dY’IW dz’p,(O, y’, 2’ )  (%k?l’, z’)/ay’, a&(y’, z’)/az’). 
- W  -03 

The force conjugate to the x direction is zero, by symmetry. This symmetry is 
essential to the analysis (and a great deal of algebraic and computational simpli- 
fication results from this assumption). Hence approximately 



64 R. F .  MacKinnon, R. Mulley and F. W .  G. Warren 

when the prime is dropped. V denotes the K wave-number space. This last integral 
expression may be simplified if spherical polar co-ordinates are used. Set 

k = KcosO, I = KsinOsin+ and m = KsinOcosq5. 

Then the time dependent conjugate forces are given by 

(D,  L) = (azFu2/2in3) Ion d e  1" CE$ 1; d K  K 3  sin4 e sin2 @ 

x (N2 - ~ 2 7 . J ~  sin2 6' sin2 q5) I to] 2 (sin 4, cos q5) 
x {(l/cr,(~~)+ (cr2eiu~t-cra,eiu~t)/cr,cr2(~,-~2)}. (2.7) 

- n  

1 *6 

A ,  = O.O! 

0" 30" 60" 90" 
Yaw, Eli 

numbers A, = aoN/U for model (i), equation (2.10). (bolao = &.) - , E, = ?p; -. .-, 
Eo = 0. 

Here U = IUI, go = t0(Ksin6'sinq5,Ksin8cosq5), 

and 

so that 

and crl - crz = 2NI 1 - sin20 sin2 (q5 + eO) 14. 
eo is the angle which the path makes with the vertical: tan eo = V /  W .  Now in the 
expression (2.7), the factor within the braces in the integrand is proper, but if 

FrauRE 2. Force coefficient Do =D/(ip3nZa2A,2b,2N2) against yaw E, at various Froude 

cr,, = - UK sin 6'sin q5 NI 1 - sin2 6' sin2 (q5 + s,)lQ, 
crl cr2 = U 2 ~ 2  sin2 6' sin2 q5 - N2( 1 - sin2 8 sin2 (q5 + eo)) 
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the terms within these braces are considered separately the corresponding inte- 
grals are improper. However, equality is preserved if principal values are taken. 
In  this event, the integral which derives from the term ( l/gl cr2) vanishes (consider 
the #-integral and set # + # + T ,  and the result follows), while for a reasonably 
behaved function of K,  say f ( K ) ,  

90" 120" 150" 180" 
Yaw, ew 

(0) 

0.4 

0.3 

4 

!3 

8 

.r( 4 0.2 

0.1 

0 
120" 150" 180" 

Yaw, 

( b )  
FIGURE 3. Force coefficient Lo as for figure 2. (a)  eo = go", (b )  eo = 0". 

with a similar result for 

H ( $ )  denotes the Heaviside unit function, and 

K, = N ]  1 - sin2 0 sin2 (# + co) I & / (  U sin 8 I sin q5 1).  
Hence if (D, L )  now denotes the limiting form of the conjugate forces for large 
values of the time t ,  it follows that 

(D, L)  = (N4Pa2/4n2U2 ) 1'' d# (1 - 51n20 51n2 ($ + go) )  
--A 

x sin2 0 (sin #, cos q5) sin2 (4 + cO) 1[s;,12/(sin2 q5 sgn $), (2.9) 
where f;, =  to(^, sin 0 sin q5, K, sin 0 cos q5), 

and 
5 

sgn$ = #M. 
Fluid Mech. 38 
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This formula is closely related to the wave resistance given by Warren for the 
axisymmetric case of vertical motion (Warren 1960, equation (19)). Put eo = 0 
in (2.9) and change to Cartesian co-ordinates (1,m). Set 

t ( l ,  m) = ((2 sin BYBl)) ' $ o w  

and consider the limiting process B + 0. Then the earlier result is recovered, 
except for a modification of the multiplying factor outside the force integral. 
This modification is not surprising since the boundary conditions for the thin 

0" 30" 60" 90" 
Yew, E, 

numbers A, = aoN/U for model (ii), equation (2.11). (bolao = =&,) ~ , €0 = 90"; 
-. .- , Eo = 0O. 

disk are different from those which are used in the axisymmetric case. It should 
be recalled that to(y', 2') refers to axes along and normal to the path. If too( Y ,  2) 
refers to axes of longitudinal and transverse symmetry of the disk respectively, 
and ev is the angle between the Y and y' axes (that is, eg is the yaw angle) then the 
relation between the Fourier transforms of f o  and too is given by 

to( I ,  m) = too( I cos Po + m sin Po, m cos Po - I sin Po). 

FIGURE 4. Force coefficient Do = D/(&5a2AXb;N2) against yew E, at various Froude 

For the purposes of calculation, disks whose contours are given by 

(i) '$oo(Y,Z) = exp(- Y2a,2-Z%;2) (2.10) 
and (ii) too( Y ,  2) = a f b f / (  Y 2  +a;) (Z2 + bf) (2.11) 
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were selected. Units of length and time are defined by setting U = 1 and n = 1.  
Curves of the conjugate force coefficients are shown in figures 2 to 6 for various 
angles of ascent eo and yaw angles eu. An interesting result arises for the case of 
horizontal motion, e,, = i n .  Here the force opposing motion is minimal when the 
disk moves broadside on, that is when the yaw ey is $n. Details of the numerical 
work involved in evaluating the formulae (2.9) are given in MacKinnon (1968). 

I I 1 
0" 30" 60" 90" 120" 150" 

Yaw, E, 

iOO 

FIGURE 5. Some force coefficient curves for models (i) and (ii) for oblique ascent. 

The computations were carried out on the London University Computer Atlas. 
These results are for bodies of infinite extent. The question has arisen of how 
they compare with the results for bodies of finite extent. No definite answer can 
be given here, but previous work (e.g. Warren 1960) suggests that provided the 
body presents no bluff contours to the current there will be no great change in the 
force coefficients. 

3. The phase surfaces 
Referring to (2.3), the modified pressure is given by 

n 

p(r,t) = (a/47r3) J- ~ K ( u . K ) ~ ( N ~ -  (u.K)~)~~(z,~)P(K,~)~~~.~/K~IT~IT~. (3.1) 

As in the previous section, the integral is expressed as a triple integral in spherical 

polar co-ordinate form, and the integral dK over scalar radial wave-numbers K 

is considered first. The path of integration is deformed into the complex K plane, 
and the separate components of the integrand are defined as principal value 

V 

J O r n  

5-2 
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integrals, 8s in (2.7). Then, considering the limit p(r) of p(r, t )  as t+m, the 
integral (3.1) yields the result 

p(r) = (inzi) I z 1 d ~ Q ( ~ )  eiK8-r + O( [ r ~ - ~ ) ,  (3.2) 

K, = ~ ~ ( 0 ,  q5) = (K, cos 8, K, sin 8 sin q5, K, sin 0 cos $), where 

Yaw, €, 

( b )  

FIGURE 6. (a) Some coefficient curves for model (i) (A, = 0.5). 
(b) Some lift coefficient curves for model (ii) (A, = 1). 

and where Q(K) is regular on XI. Xl is that part of the surface of the unit sphere 
where 

K, is given by the intersection of the cone 

sgn(~,.r)+sg,gn(~,.U) = 0. (3.3) 

IN x PI = c = constant 

and the planes U . K  = kC, 

since K, satisfies ( T ~ , ~ ( K , )  = 0. In terms of the polar and azimuth angles, for 
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approximately. For a given point (0, 9) on XI, there is one and only one value of 
K ,  ( > 0) ,  and hence only one value of K ~ ,  for which cr1cr2 vanishes. For large Irl, 
the method of stationary phase yields a term O( \.I-'). Following Lighthill (1964, 
1967), the phase surfaces are given by the condition that Ks(O, 9). r is stationary, 
and it follows that these surfaces are given by 

subject to the condition (3.3) where C is constant for a given phase surface. 
Calculations for some of these surfaces have been carried out and models have 

rphase(@ 9) = c ( a K s P 0  x w a 9 ) / [ a K s / a e ,  a K s / a 9 ,  Ksl ,  (3.5) 

FIGURE 7. A phase surface for horizontal motion. (Lower sheet.) 

FIGURE 8. A phase surface for motion along a line inclined a.t 60' to the vertical. 
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been constructed for the cases of horizontal motion and for an ascent angle of 
eo = 60" (figures 7 and 8). Forward propagation of waves was found in this latter 
case, and in fact for all cases except for purely vertical (eo = 0) or horizontal 
motion (eo = in). For details of the working the reader is referred to Mulley 
(1968). The vertical section made by the y, z plane through these surfaces agree 
with results for the two-dimensional case given by Rarity (1967), except that no 
forward propagation of waves was found when the disk moves horizontally. 
A further check is given by comparison with one of Lighthill's (1967) results for 
the case of vertical motion, eo = 0. 

Finally, it is noted that if in (3.1) the substitutions U = (0, 0, W ) ,  x = r cos 8, 
y = rsin8 and tO( l ,m)  = 6(Z) tO(m) are made, then an integration with respect 
to 8 yields an expression for the pressure for the axisymmetric case with vertical 
motion. If the identification 

is made, this expression is seen to correspond with the form of the stream function 
obtained by Warren (1960). 

4. Comment on the Boussinesq approximation for an incompressible 
fluid 

If the Boussinesq approximation is not made it is well known that certain 
difficulties in the linearization of the basic equations can arise. For example, in 
the case of ascent, the wave amplitude of the fluid particle displacement increases 
exponentially upwards like exp ( i p z ) ,  while in descent, the pressure and density 
perturbations increase like exp (Bpz). Further difficulties arise in connexion with 
the initial value problem. I n  the case of vertical descent, Warren (1960) attempted 
to show that certain 'transients' may not decay, but ultimately may become 
large because of contributions from terms 

which occur in the stream function. However, this result is misleading because 
further work has shown that for strictly vertical motion m is infinite. Similarly 
for horizontal motion p1 is zero. Nevertheless, for oblique ascent, the problem 
remains, and in this case the analysis below shows that m is finite andp, is positive. 
A similar result has been obtained by Fraenkel (1962, unpublished) who has 
shown that for vertical ascent within an infinite vertical duct or channel of finite 
width, the stream function contains a term O(t-* ePlt)  where > 0. This suggests 
that oblique reflexion from the vertical walls of the duct plays an important 
part in the ultimate behaviour of transients. Consider the transient axisymmetric 
problem of a vertical line source immersed in an infinite incompressible stratified 
fluid, and make linear approximations in the usual way, but do not make the 
Boussinesq approximation. Choose cylindrical polar co-ordinate axes whose 
polar axis coincides with the z axis and put (9 + y2)* = r .  Let the strength of the 
source along the z axis be f(z) g ( t )  where f ( z )  vanishes outside a certain interval 
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of the z axis containing the origin, and g(t)  is non-zero only for 0 < t < T say. 
Then the modified pressure p(r, x ,  t )  satisfies 

a2/at2(a2/ar2 + r:’ ajar -p2/4 + a2/ax2)p + N2(a2/ar2 + r-l a/ar)p = 0, (4.2) 

and the transformed modified pressure, 

p(h,rn ,w)  = IOm dtJm --m dm~omdrrJo(hr)e-i(~z-ot),  

where Imw > 0, is equal to 
i W ( N 2 -  W 2 ) f ( h )  g(w) 

w2(h2 + m2 + *p2)  - N2h2’ (4.3) 

where f(h) g(w)  represents the transformed source strength. Inverting, the true 
pressure perturbation is given by 

where 

where c > 0. Evaluate the m integral here by the calculus of residues. The h 
integration may then be performed by using the identity 

where the real parts of a and b are positive (see, for example, Erdelyi et al. 1954, 
p. 9). Similar identities have been employed by Pierce (1963) and Row (1967) in 
studies of acoustic gravity waves in the atmosphere. The resulting expression 
for G is 

x exp { - &/3(r2 + x2)* (w2 - N2 cos2 so)* (w2 - N$)-fr}, (4.5) 

where the roots have positive real parts and sin E ,  = r (r2 + x 2 ) 4 .  When either 
x = 0 or r = 0 it  is seen that pl  tends to zero at  large distances for all values of 
the time. However, consider an observer who moves with a velocity ( U ,  0, W ) ,  
where neither U nor W are zero. Set r = Ut, z = Wt. Then 

1 N 
G( Ut, Wt, t )  = - ( U 2 +  W2)-?ie-@wtt-1 

77 

x sin wt cos {+p( U2 + W2)fr t(w2 - N2 cos2 eo)4 (N2 - w2)-4) 

+ +( U 2  + W2)-* t-l exp [ - +pt{( U 2  + W2)fr+ W}] &(t), (4.6) 

where &(t) is the Dirac delta function. (In expression ( 4 4 ,  the residues at  o = N 
and w = N cos E ,  vanish.) For large values of the time t ,  the integral in this ex- 
pression for G is O(t-fr) or O(t-l) according to whether 

w - &p( U2 + W 2 ) d  (w2 - N 2  C O S ~ E , ) ~  ( N 2  - d - 4  
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has or has not stationary points in the interval of integration. It follows that 
for large t ,  p,( Ut, Wt, t )  is of the form (4.1) where m is positive and finite, and@, is 
negative if W > 0 (ascent) and positive if W < 0 (descent). Hence the dispersion 
of waves in an infinite uniformly stratified inviscid liquid is such that neither 
pressure waves which travel downwards nor fluid velocity perturbations which 
travel upwards are truly evanescent. 

It is worth while to note that from (4.5) it follows that 

p = ( x 2  + y2 + z ~ ) - * J ~ { N ~ z ( ~ ~  + y2 + z2)-$) 

{ayatw + Nya2/a22 + a21ay2))p = 0, 

(4.7) 

(4.8) is a solution of 

except at  the origin. However, the behaviour of this solution at  the origin is not 
a suitable (e.g. delta) function of the time. It is also worth while to note the 
analogous case of a uniform fluid which rotates as a rigid body about the z axis 
with angular velocity Q. The pressure perturbation satisfies 

[a2/at2{a/ar(r a/ar) + r a2/az2) + 4 ~ 2 ~  a 2 / a ~ 2 ]  p = o (4.9) 

(see e.g. Greenspan 1968, p. 22). Here of course no question of the Boussinesq 
approximation arises. The analysis similar to the one above shows that for a 
transient line source on the z axis the solution is given by 

where (4.11) 

The phase surfaces of the solutions (4.7) and (4.11) are a series of right conical 
surfaces whose axes coincide with the z axis, their common apex being at the 
origin. These cones open outwards and away from the axis as time increases, in 
the case of gravity waves, and they collapse onto the axis in the case of inertial 
waves. 

Finally, the method carries through for the general case of a rotating com- 
pressible isothermal fluid under gravity, when the equation for p is obtained by 
adding 

to the left-hand side of ( l . l ) ,  see Eckart (1960, pp. 95-7) and Greenspan (1968, 
p. 13). The Green’s function is given by the expression (4.5) if in the integrand /3 
and COB eo are replaced by (p2 - 4cr2w2): and ( cos2 c0 + 4Q2N-2 sin2 so)* respectively, 
and shows that non-evanescent transients are again present. When gravity is 
absent ( N  = /3 = 0) the solution is given by (4.11) if within the square brackets 
t is replaced by It2-R2c-214sgn(ct-R) (where R = (x2+y2+z2)* = (r2+z2)*) ,  
while for the incompressible case, c = co, the function corresponding to (4.7) is 
obtained by replacing N by (N2 + 4fi2r2ZV2)3, showing that the conical phase 
surfaces open outwards if N > 2Q, and collapse if N <  2Q. 

4fiya2/a22 - p2p - C-2a2lat21 p 
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